Copied to
clipboard

G = C32×D13order 234 = 2·32·13

Direct product of C32 and D13

direct product, metacyclic, supersoluble, monomial, A-group

Aliases: C32×D13, C396C6, (C3×C39)⋊3C2, C133(C3×C6), SmallGroup(234,11)

Series: Derived Chief Lower central Upper central

C1C13 — C32×D13
C1C13C39C3×C39 — C32×D13
C13 — C32×D13
C1C32

Generators and relations for C32×D13
 G = < a,b,c,d | a3=b3=c13=d2=1, ab=ba, ac=ca, ad=da, bc=cb, bd=db, dcd=c-1 >

13C2
13C6
13C6
13C6
13C6
13C3×C6

Smallest permutation representation of C32×D13
On 117 points
Generators in S117
(1 113 54)(2 114 55)(3 115 56)(4 116 57)(5 117 58)(6 105 59)(7 106 60)(8 107 61)(9 108 62)(10 109 63)(11 110 64)(12 111 65)(13 112 53)(14 80 66)(15 81 67)(16 82 68)(17 83 69)(18 84 70)(19 85 71)(20 86 72)(21 87 73)(22 88 74)(23 89 75)(24 90 76)(25 91 77)(26 79 78)(27 99 41)(28 100 42)(29 101 43)(30 102 44)(31 103 45)(32 104 46)(33 92 47)(34 93 48)(35 94 49)(36 95 50)(37 96 51)(38 97 52)(39 98 40)
(1 33 20)(2 34 21)(3 35 22)(4 36 23)(5 37 24)(6 38 25)(7 39 26)(8 27 14)(9 28 15)(10 29 16)(11 30 17)(12 31 18)(13 32 19)(40 78 60)(41 66 61)(42 67 62)(43 68 63)(44 69 64)(45 70 65)(46 71 53)(47 72 54)(48 73 55)(49 74 56)(50 75 57)(51 76 58)(52 77 59)(79 106 98)(80 107 99)(81 108 100)(82 109 101)(83 110 102)(84 111 103)(85 112 104)(86 113 92)(87 114 93)(88 115 94)(89 116 95)(90 117 96)(91 105 97)
(1 2 3 4 5 6 7 8 9 10 11 12 13)(14 15 16 17 18 19 20 21 22 23 24 25 26)(27 28 29 30 31 32 33 34 35 36 37 38 39)(40 41 42 43 44 45 46 47 48 49 50 51 52)(53 54 55 56 57 58 59 60 61 62 63 64 65)(66 67 68 69 70 71 72 73 74 75 76 77 78)(79 80 81 82 83 84 85 86 87 88 89 90 91)(92 93 94 95 96 97 98 99 100 101 102 103 104)(105 106 107 108 109 110 111 112 113 114 115 116 117)
(1 13)(2 12)(3 11)(4 10)(5 9)(6 8)(14 25)(15 24)(16 23)(17 22)(18 21)(19 20)(27 38)(28 37)(29 36)(30 35)(31 34)(32 33)(41 52)(42 51)(43 50)(44 49)(45 48)(46 47)(53 54)(55 65)(56 64)(57 63)(58 62)(59 61)(66 77)(67 76)(68 75)(69 74)(70 73)(71 72)(80 91)(81 90)(82 89)(83 88)(84 87)(85 86)(92 104)(93 103)(94 102)(95 101)(96 100)(97 99)(105 107)(108 117)(109 116)(110 115)(111 114)(112 113)

G:=sub<Sym(117)| (1,113,54)(2,114,55)(3,115,56)(4,116,57)(5,117,58)(6,105,59)(7,106,60)(8,107,61)(9,108,62)(10,109,63)(11,110,64)(12,111,65)(13,112,53)(14,80,66)(15,81,67)(16,82,68)(17,83,69)(18,84,70)(19,85,71)(20,86,72)(21,87,73)(22,88,74)(23,89,75)(24,90,76)(25,91,77)(26,79,78)(27,99,41)(28,100,42)(29,101,43)(30,102,44)(31,103,45)(32,104,46)(33,92,47)(34,93,48)(35,94,49)(36,95,50)(37,96,51)(38,97,52)(39,98,40), (1,33,20)(2,34,21)(3,35,22)(4,36,23)(5,37,24)(6,38,25)(7,39,26)(8,27,14)(9,28,15)(10,29,16)(11,30,17)(12,31,18)(13,32,19)(40,78,60)(41,66,61)(42,67,62)(43,68,63)(44,69,64)(45,70,65)(46,71,53)(47,72,54)(48,73,55)(49,74,56)(50,75,57)(51,76,58)(52,77,59)(79,106,98)(80,107,99)(81,108,100)(82,109,101)(83,110,102)(84,111,103)(85,112,104)(86,113,92)(87,114,93)(88,115,94)(89,116,95)(90,117,96)(91,105,97), (1,2,3,4,5,6,7,8,9,10,11,12,13)(14,15,16,17,18,19,20,21,22,23,24,25,26)(27,28,29,30,31,32,33,34,35,36,37,38,39)(40,41,42,43,44,45,46,47,48,49,50,51,52)(53,54,55,56,57,58,59,60,61,62,63,64,65)(66,67,68,69,70,71,72,73,74,75,76,77,78)(79,80,81,82,83,84,85,86,87,88,89,90,91)(92,93,94,95,96,97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112,113,114,115,116,117), (1,13)(2,12)(3,11)(4,10)(5,9)(6,8)(14,25)(15,24)(16,23)(17,22)(18,21)(19,20)(27,38)(28,37)(29,36)(30,35)(31,34)(32,33)(41,52)(42,51)(43,50)(44,49)(45,48)(46,47)(53,54)(55,65)(56,64)(57,63)(58,62)(59,61)(66,77)(67,76)(68,75)(69,74)(70,73)(71,72)(80,91)(81,90)(82,89)(83,88)(84,87)(85,86)(92,104)(93,103)(94,102)(95,101)(96,100)(97,99)(105,107)(108,117)(109,116)(110,115)(111,114)(112,113)>;

G:=Group( (1,113,54)(2,114,55)(3,115,56)(4,116,57)(5,117,58)(6,105,59)(7,106,60)(8,107,61)(9,108,62)(10,109,63)(11,110,64)(12,111,65)(13,112,53)(14,80,66)(15,81,67)(16,82,68)(17,83,69)(18,84,70)(19,85,71)(20,86,72)(21,87,73)(22,88,74)(23,89,75)(24,90,76)(25,91,77)(26,79,78)(27,99,41)(28,100,42)(29,101,43)(30,102,44)(31,103,45)(32,104,46)(33,92,47)(34,93,48)(35,94,49)(36,95,50)(37,96,51)(38,97,52)(39,98,40), (1,33,20)(2,34,21)(3,35,22)(4,36,23)(5,37,24)(6,38,25)(7,39,26)(8,27,14)(9,28,15)(10,29,16)(11,30,17)(12,31,18)(13,32,19)(40,78,60)(41,66,61)(42,67,62)(43,68,63)(44,69,64)(45,70,65)(46,71,53)(47,72,54)(48,73,55)(49,74,56)(50,75,57)(51,76,58)(52,77,59)(79,106,98)(80,107,99)(81,108,100)(82,109,101)(83,110,102)(84,111,103)(85,112,104)(86,113,92)(87,114,93)(88,115,94)(89,116,95)(90,117,96)(91,105,97), (1,2,3,4,5,6,7,8,9,10,11,12,13)(14,15,16,17,18,19,20,21,22,23,24,25,26)(27,28,29,30,31,32,33,34,35,36,37,38,39)(40,41,42,43,44,45,46,47,48,49,50,51,52)(53,54,55,56,57,58,59,60,61,62,63,64,65)(66,67,68,69,70,71,72,73,74,75,76,77,78)(79,80,81,82,83,84,85,86,87,88,89,90,91)(92,93,94,95,96,97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112,113,114,115,116,117), (1,13)(2,12)(3,11)(4,10)(5,9)(6,8)(14,25)(15,24)(16,23)(17,22)(18,21)(19,20)(27,38)(28,37)(29,36)(30,35)(31,34)(32,33)(41,52)(42,51)(43,50)(44,49)(45,48)(46,47)(53,54)(55,65)(56,64)(57,63)(58,62)(59,61)(66,77)(67,76)(68,75)(69,74)(70,73)(71,72)(80,91)(81,90)(82,89)(83,88)(84,87)(85,86)(92,104)(93,103)(94,102)(95,101)(96,100)(97,99)(105,107)(108,117)(109,116)(110,115)(111,114)(112,113) );

G=PermutationGroup([[(1,113,54),(2,114,55),(3,115,56),(4,116,57),(5,117,58),(6,105,59),(7,106,60),(8,107,61),(9,108,62),(10,109,63),(11,110,64),(12,111,65),(13,112,53),(14,80,66),(15,81,67),(16,82,68),(17,83,69),(18,84,70),(19,85,71),(20,86,72),(21,87,73),(22,88,74),(23,89,75),(24,90,76),(25,91,77),(26,79,78),(27,99,41),(28,100,42),(29,101,43),(30,102,44),(31,103,45),(32,104,46),(33,92,47),(34,93,48),(35,94,49),(36,95,50),(37,96,51),(38,97,52),(39,98,40)], [(1,33,20),(2,34,21),(3,35,22),(4,36,23),(5,37,24),(6,38,25),(7,39,26),(8,27,14),(9,28,15),(10,29,16),(11,30,17),(12,31,18),(13,32,19),(40,78,60),(41,66,61),(42,67,62),(43,68,63),(44,69,64),(45,70,65),(46,71,53),(47,72,54),(48,73,55),(49,74,56),(50,75,57),(51,76,58),(52,77,59),(79,106,98),(80,107,99),(81,108,100),(82,109,101),(83,110,102),(84,111,103),(85,112,104),(86,113,92),(87,114,93),(88,115,94),(89,116,95),(90,117,96),(91,105,97)], [(1,2,3,4,5,6,7,8,9,10,11,12,13),(14,15,16,17,18,19,20,21,22,23,24,25,26),(27,28,29,30,31,32,33,34,35,36,37,38,39),(40,41,42,43,44,45,46,47,48,49,50,51,52),(53,54,55,56,57,58,59,60,61,62,63,64,65),(66,67,68,69,70,71,72,73,74,75,76,77,78),(79,80,81,82,83,84,85,86,87,88,89,90,91),(92,93,94,95,96,97,98,99,100,101,102,103,104),(105,106,107,108,109,110,111,112,113,114,115,116,117)], [(1,13),(2,12),(3,11),(4,10),(5,9),(6,8),(14,25),(15,24),(16,23),(17,22),(18,21),(19,20),(27,38),(28,37),(29,36),(30,35),(31,34),(32,33),(41,52),(42,51),(43,50),(44,49),(45,48),(46,47),(53,54),(55,65),(56,64),(57,63),(58,62),(59,61),(66,77),(67,76),(68,75),(69,74),(70,73),(71,72),(80,91),(81,90),(82,89),(83,88),(84,87),(85,86),(92,104),(93,103),(94,102),(95,101),(96,100),(97,99),(105,107),(108,117),(109,116),(110,115),(111,114),(112,113)]])

C32×D13 is a maximal subgroup of   C39⋊Dic3

72 conjugacy classes

class 1  2 3A···3H6A···6H13A···13F39A···39AV
order123···36···613···1339···39
size1131···113···132···22···2

72 irreducible representations

dim111122
type+++
imageC1C2C3C6D13C3×D13
kernelC32×D13C3×C39C3×D13C39C32C3
# reps1188648

Matrix representation of C32×D13 in GL4(𝔽79) generated by

1000
05500
0010
0001
,
23000
0100
0010
0001
,
1000
0100
0001
007818
,
78000
07800
0001
0010
G:=sub<GL(4,GF(79))| [1,0,0,0,0,55,0,0,0,0,1,0,0,0,0,1],[23,0,0,0,0,1,0,0,0,0,1,0,0,0,0,1],[1,0,0,0,0,1,0,0,0,0,0,78,0,0,1,18],[78,0,0,0,0,78,0,0,0,0,0,1,0,0,1,0] >;

C32×D13 in GAP, Magma, Sage, TeX

C_3^2\times D_{13}
% in TeX

G:=Group("C3^2xD13");
// GroupNames label

G:=SmallGroup(234,11);
// by ID

G=gap.SmallGroup(234,11);
# by ID

G:=PCGroup([4,-2,-3,-3,-13,3459]);
// Polycyclic

G:=Group<a,b,c,d|a^3=b^3=c^13=d^2=1,a*b=b*a,a*c=c*a,a*d=d*a,b*c=c*b,b*d=d*b,d*c*d=c^-1>;
// generators/relations

Export

Subgroup lattice of C32×D13 in TeX

׿
×
𝔽